28 VOLT INPUT - 1.5 WATT

FEATURES

Small size, 0.79 in² (5.1 cm²)

- Operating temperature -55° to +125°C
- · Qualified to MIL-PRF-38534 Class H and K
- · Radiation hardness assurance (RHA) to level R 100 krad(Si)
- · Input voltage range 16 to 40 VDC
- Fully isolated, magnetic feedback
- · Inhibit function
- · Indefinite short circuit protection
- · High power density, up to 88% efficiency
- Radiation tolerant to High dose rate (HDR)
 - 100 krad(Si) total ionizing dose (TID),
 30-300 rad(Si)/sec dose rate
 - SEE LET to 86.3 MeV cm²/mg

MODELS				
VDC OUTPUT				
SINGLES	DUALS			
5	±5			
12	±12			
15	±15			

DESCRIPTION

With a miniature footprint of just 0.79 square inches, the Interpoint™ SLH Series™ of 28 V dc-dc converters delivers 1.5 watts of output power while saving significant board area. The wide input voltage range of 16 to 40 VDC accepts the varying voltages of space, military, or aerospace bus power and tightly regulates output voltages to protect downstream components. Single output models feature outputs of 5, 12, or 15 volts, and dual output models feature outputs of ±5, ±12 and ±15 volts.

SCREENING

SLH converters offer the following screening options: Space Prototype (O), Class H, or Class K. Radiation tolerant to Radiation Hardness Assurance (RHA) levels of "-" (O) or "R", per MIL-STD-38534. Interpoint model numbers use an "O" in the RHA designator position to indicate the "-" (dash) Radiation Hardness Assurance level of MIL-PRF-38534, which is defined as "no RHA". See "Table 8: Element Evaluation" on page 11 and "Table 9: Environmental Screening and RHA Levels" on page 12 for more information.

CONVERTER DESIGN

SLH Series dc-dc converters incorporate a flyback topology with a variable switching frequency. Feedback provides output voltage regulation. Output voltage is magnetically fed back to the input side of the PWM to regulate output voltage.

Up to 80% of the load of the dual output models may be on one output providing that the other output carries a minimum of 20% of the total load. The dual models can be used as a single output voltage by connecting the load between positive and negative outputs, leaving the common unconnected resulting in double the output voltage. (for example, SLH2805D can be used as a 10 VDC output.)

When used with Interpoint's STF28-461 filter, the combination will meet the requirements of MIL-STD-461C, CE03.

INHIBIT FUNCTION

The SLH Series incorporates an inhibit terminal that can be used to disable internal switching. The converter is inhibited when an active low (\leq 0.5 V) signal is applied to the inhibit pin (pin 7). In the inhibit mode the inhibit pin sources up to 2 mA maximum. The converter resumes normal operation when an open circuit is applied to the inhibit pin. The open circuit voltage of the inhibit is 7 to 8 volts. Do not apply an external pull-up to the converter.

PROTECTION FEATURES

All models include a soft-start function to prevent large current draw and minimize overshoot. The converters provide short circuit protection (by restricting the current) and output overload protection.

CONVENIENT PACKAGING

The SLH Series converters are packaged in hermetically sealed metal cases which provide EMI/RFI shielding.

28 VOLT INPUT - 1.5 WATT

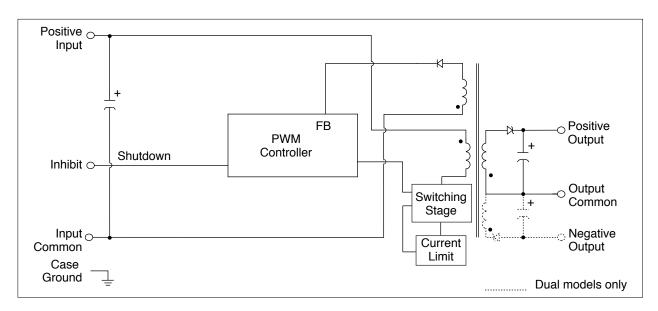


FIGURE 1: SLH BLOCK DIAGRAM

	PIN OUT						
Pin	Single Output	Dual Output					
1	Positive Input	Positive Input					
2	Input Common	Input Common					
3	Positive Output	Positive Output					
4	Output Common	Output Common					
5	Case Ground	Case Ground					
6	No Connection	Negative Output					
7	Inhibit	Inhibit					

TABLE 1: PIN OUT

	ed corner cover indi		
⊙ ⊙ 1 2	⊙ 3	⊙ 4	
Во	ottom View	1	
7 •	6 ⊙	5	

See "Figure 22: Case A2" on page 10 for dimensions.

FIGURE 2: PIN OUT

PINS NOT	IN USE
Inhibit	Leave unconnected
"No Connection" pin	Leave unconnected

TABLE 2: PINS NOT IN USE

28 VOLT INPUT - 1.5 WATT

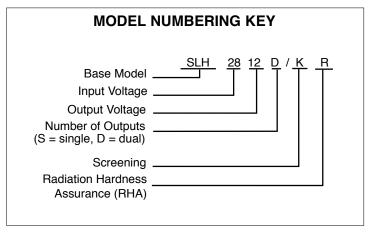


FIGURE 3: MODEL NUMBERING KEY

SMD NUMBERS							
STANDARD MICROCIRCUIT DRAWING (SMD)	SLH SIMILAR PART						
5962R0052601KXC	SLH2805S/KR						
5962R0052701KXC	SLH2812S/KR						
5962R0052801KXC	SLH2815S/KR						
5962R0250401KXC	SLH2805D/KR						
5962R9955601KXC	SLH2812D/KR						
5962R9852901KXC	SLH2815D/KR						

The SMD number shown is for Class K screening and Radiation Hardness Assurance (RHA) level R. See the SMD for the numbers for other screening and radiation levels. For exact specifications for an SMD product, refer to the SMD drawing. SMDs can be downloaded from www.landandmaritime.dla.mil/programs/smcr

TABLE 3: SMD NUMBER CROSS REFERENCE

MODEL NUMBER OPTIONS On the lines below, enter one selection from each category to determine the model number.									
CATEGORY Base Model and Input Voltage Output Voltage Number of Outputs 1 Screening 2 RHA 3 5, 12, 15 S O									
		5, 12, 15	S	0	0				
OPTIONS	SLH28	5, 12, 15	D	н	R				
				K					
FILL IN FOR MODEL #	SLH28			, ——					

Notes

- 1. Number of Outputs: S is a single output and D is a dual output.
- 2. Screening: A screening level of O is a Space Prototype and is only used with RHA O. See "Table 8: Element Evaluation" on page 11 and "Table 9: Environmental Screening and RHA Levels" on page 12 for more information.
- 3. RHA: Interpoint model numbers use an "O" in the RHA designator position to indicate the "-" (dash) Radiation Hardness Assurance level of MIL-PRF-38534, which is defined as "no RHA." RHA O is only available with Screening level O. See "Table 9: Environmental Screening and RHA Levels" on page 12 for more information.

TABLE 4: SMD NUMBER CROSS REFERENCE

28 VOLT INPUT - 1.5 WATT

Table 5: Operating Conditions - All Models, 25°C case, 28 VDC Vin, unless otherwise specified

		ALL MODELS			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LEAD SOLDERING TEMPERATURE ¹	10 seconds max.	_	_	300	°C
STORAGE TEMPERATURE		-65	_	+150	°C
CASE OPERATING	FULL POWER	-55	_	+125	°C
TEMPERATURE	ABSOLUTE 1	-55	_	+135	
DERATING OUTPUT POWER/CURRENT ¹	LINEARLY	From 10	00% at 125°C	to 0% at	135°C
ISOLATION, ANY PIN TO CASE EXCEPT CASE PIN	@ 500 VDC AT 25°C	100	_	_	Megohms
INPUT TO OUTPUT CAPACITANCE ¹		-	100 - 170	_	pF
CONVERSION FREQUENCY	5, 12, 15, ±5 AND ±15	220	280	320	kHz
-55° TO +125°C	±12	220	_	420	1
INHIBIT ACTIVE LOW (OUTPUT DISABLED) Do not apply a voltage to the inhibit pin ²	INHIBIT PIN PULLED LOW	_	_	0.5	V
	INHIBIT PIN SOURCE CURRENT ¹	_	_	2	mA
	REFERENCED TO		INPUT CO	NOMMC	
INHIBIT ACTIVE HIGH (OUTPUT ENABLED) Do not apply a voltage to the inhibit pin ²	INHIBIT PIN CONDITION	OPEN (COLLECTOR OR UNCO		ONNECTED
	OPEN INHIBIT PIN VOLTAGE ¹	7	_	8	V

Guaranteed by qualification test and/or analysis. Not an in-line test.
 An external inhibit interface should be used to pull the inhibit low or leave it floating. The inhibit pin can be left unconnected if not used. Do not apply an external pull-up.

28 VOLT INPUT - 1.5 WATT

Table 6: Electrical Characteristics: -55° to +125°C case, 28 VDC Vin, 100% load, unless otherwise specified

SINGLE OUTPUT MODEL	S	s	SLH2805	S	s	LH2812	S	S	LH2815	S	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE ²		4.80	5.00	5.20	11.52	12.00	12.48	14.40	15.00	15.60	VDC
OUTPUT CURRENT	V _{IN} = 16 to 40 VDC	_	_	300	_	_	125	_	_	100	mA
OUTPUT POWER	V _{IN} = 16 to 40 VDC	_	_	1.5	_	_	1.5	_	_	1.5	W
OUTPUT RIPPLE	T _C = 25°C	_	65	150	_	35	200	_	60	200	mV p-p
10 kHz - 2 MHz	T _C = -55°C TO +125°C	_	_	250	_	_	400	_	_	500	v p p
LINE REGULATION	V _{IN} = 16 TO 40 VDC	_	115	300	_	60	400	_	60	650	mV
LOAD REGULATION 3	LOAD 10% TO 100%	_	440	700	_	380	700	_	410	700	mV
INPUT VOLTAGE	NO LOAD TO FULL CONTINUOUS	16	28	40	16	28	40	16	28	40	VDC
	TRANSIENT ¹ 50 ms	_	_	50	_	_	50	_	_	50	V
INPUT CURRENT	NO LOAD	_	2.9	17	_	2.3	17	_	2.4	17	mA
	INHIBITED	_	1.3	5	_	1.3	5	_	1.3	5	ША
INPUT RIPPLE CURRENT 4	10 KHZ - 10 MHZ	_	85	250	_	75	300	_	60	300	mA p-p
EFFICIENCY	T _C = 25°C	72	79	_	80	87	_	80	88	_	%
	T _C = -55°C TO +125°C	69	_	_	69	_	_	69	_	_	,0
LOAD FAULT ⁵	SHORT CIRCUIT POWER DISSIPATION	_	0.4	1.5	_	0.3	1.2	_	0.3	1.2	W
	RECOVERY 1	_	_	30	_	_	30	_	_	30	ms
STEP LOAD RESPONSE	TRANSIENT 7	_	±250	±400	_	±220	±700	_	±220	±700	mV pk
50% - 100% - 50%	RECOVERY 1, 6	_	_	400	_	_	400	_	_	400	μs
STEP LINE RESPONSE ¹	TRANSIENT 7	_	_	±600	_	_	±600	_	_	±600	mV pk
16 - 40 - 16 VDC	RECOVERY 6	_	_	500	_	_	500	_	_	500	μs
START-UP ⁸	DELAY	_	1	20	_	1	20	_	1	20	ms
	OVERSHOOT 1	_	_	100	_	_	500	_	_	500	mV pk
CAPACITIVE LOAD ¹ T _C = 25°C, EACH OUTPUT	NO EFFECT ON DC PERFORMANCE	_	_	100	_	_	100	_	_	100	μF

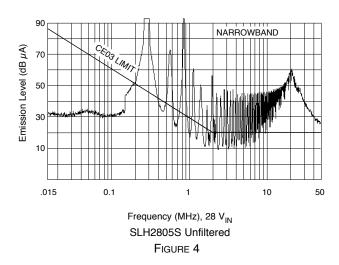
Notes:

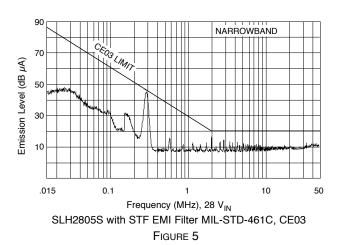
- 1. Guaranteed by qualification test and/or analysis. Not an in-line test.
- 2. Specified at 50% load.
- Although no minimum load is required, at no load the output voltage may exceed rating by up to 15%.
- 4. An external 6 μ H inductor, added in series to the input, is necessary to maintain specifications.
- 5. Load fault is a short circuit into 1Ω . Recovery is into resistive full load.
- 6. Recovery is time to settle to within 1% of Vout final value.
- 7. Transition time > 10 μ s.
- 8. Measured from release of inhibit until Vout settles to within 1% of final value at full load with Vin at 28 V.

28 VOLT INPUT - 1.5 WATT

Table 7: Electrical Characteristics: -55° to +125°C case, 28 VDC Vin, 100% load, unless otherwise specified

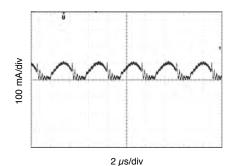
DUAL OUTPUT MODELS		s	LH2805	D	s	SLH2812	D	s	SLH2815	D	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE ²	±V _{OUT}	4.80	5.00	5.20	11.52	12.00	12.48	14.40	15.00	15.60	VDC
OUTPUT CURRENT 3	EACH OUTPUT	_	150	240	_	62.5	100	_	50	80	mA
V_{IN} = 16 to 40 VDC	TOTAL			300			125			100]
OUTPUT POWER 3	EACH OUTPUT	_	0.75	1.2	_	0.75	1.2	_	0.75	1.2	W
V_{IN} = 16 to 40 VDC	TOTAL			1.5			1.5			1.5	
OUTPUT RIPPLE	T _C = 25°C	_	_	250	_	_	400	_	_	500	mV p-p
10 kHz - 2 MHz ±V _{OUT}	T _C = -55°C TO +125°C	_	_	250	_	_	400	_	_	500	,
LINE REGULATION ±V _{OUT}	V _{IN} = 16 TO 40 VDC	_	75	400	_	75	700	_	85	650	mV
LOAD REGULATION 4	BALANCED LOADS										
10% - 100%	±V _{OUT}	_	310	700	_	350	700	_	370	700	mV
INPUT VOLTAGE	CONTINUOUS NO LOAD TO FULL	16	28	40	16	28	40	16	28	40	VDC
	TRANSIENT ¹ 50 ms	0	_	50	0	_	50	0	_	50	ms
INPUT CURRENT	NO LOAD	_	3.1	17	_	3.1	17	_	3.3	17	mA
	INHIBITED	_	1.4	5	_	1.4	5	_	1.4	5	
INPUT RIPPLE CURRENT 5	10 kHz - 10 MHz	_	80	250	_	90	300	_	100	300	mA p-p
EFFICIENCY	T _C = 25°C	72	75	_	80	87	_	80	87	_	%
	T _C = -55°C TO +125°C	69	_	_	69	_	_	69	_	_	/0
LOAD FAULT ⁶	SHORT CIRCUIT POWER DISSIPATION	_	0.3	1.5	_	0.3	1.2	_	0.3	1.2	W
	RECOVERY 1	_	_	30	_	1	30	_	1	30	ms
STEP LOAD RESPONSE											
BALANCED LOADS	TRANSIENT 8	_	±150	±400	_	±170	±600	_	±200	±700	mV pk
50% - 100% - 50% ±V _{OUT}	RECOVERY 1, 7	_	_	600	_	_	360	_	_	600	μs
STEP LINE RESPONSE ¹	TRANSIENT 8	_	_	±600	_	_	±600	_	_	±600	mV pk
16 - 40 - 16 VDC ±V _{OUT}	RECOVERY 7	_	_	500	_	_	500	_	_	500	μs
START-UP ⁹	DELAY	_	1	20	_	2	20	_	2	20	ms
$\pm V_{OUT}$	OVERSHOOT 1	_	_	500	_	_	500	_	_	500	mV pk
CAPACITIVE LOAD ¹ T _C = 25°C, EACH OUTPUT	NO EFFECT ON DC PERFORMANCE	_	_	100	_	_	100	_	_	100	μF

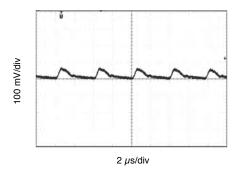

Notes

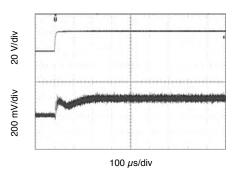

- 1. Guaranteed by qualification test and/or analysis. Not an in-line test.
- 2. Specified at 50%/50% balanced load.
- Maximum specification indicates 80% of the converter's total current/power is available from either output, provided the other output carries 20% of the total power.
- 4. Although no minimum load is required, at no load the output voltage may exceed rating by up to 15%.
- 5. An external 6 $\mu{\rm H}$ inductor, added in series to the input, is necessary to maintain specifications.
- 6. Load fault is a short circuit into 1Ω . Recovery is into resistive full load.
- 7. Recovery is time for $\pm Vout$ to settle to within 1% of final value.
- 8. Transition time > 10 μ s.
- 9. Measured from release of inhibit until Vout settles to within 1% of final value at full load with Vin at 28 V.

28 VOLT INPUT - 1.5 WATT

ELECTRICAL CHARACTERISTICS: -55° TO +125°C CASE, 28 VDC VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED THESE ARE EXAMPLES FOR REFERENCE ONLY AND ARE NOT GUARANTEED SPECIFICATIONS

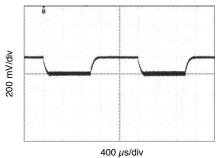

EMI: Representative of all SLH Models

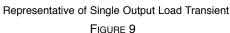


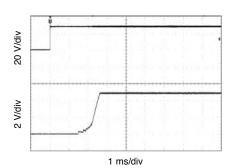


28 VOLT INPUT - 1.5 WATT

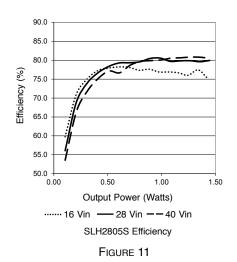
ELECTRICAL CHARACTERISTICS: -55° TO +125°C CASE, 28 VDC VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED THESE ARE EXAMPLES FOR REFERENCE ONLY AND ARE NOT GUARANTEED SPECIFICATIONS

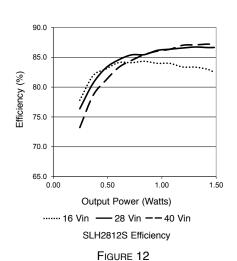


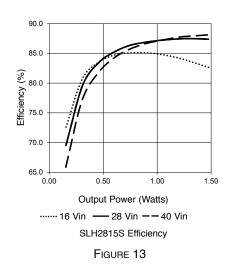



 $_{\rm FIGURE}$ 6 $_{\rm FIGURE}$ 6 $_{\rm FIGURE}$ 6

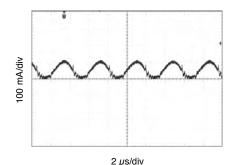
Representative of Single Output Ripple Voltage $F_{\text{IGURE}} \ 7$

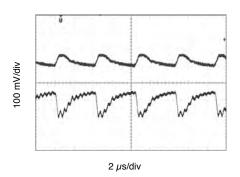

Vin 16 to 40 to 16 VDC, full resistive load Representative of Single Output Line Transient FIGURE 8



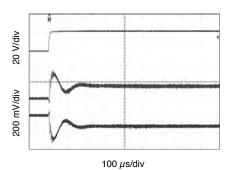


Representative of Single Output Turn-On Delay Figure 10

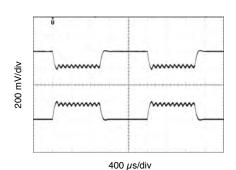


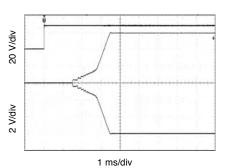


28 VOLT INPUT - 1.5 WATT

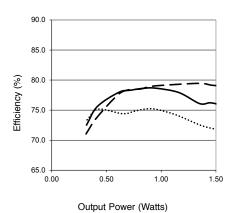

ELECTRICAL CHARACTERISTICS: -55° TO +125°C CASE, 28 VDC VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED THESE ARE EXAMPLES FOR REFERENCE ONLY AND ARE NOT GUARANTEED SPECIFICATIONS

 $_{\rm 6}\,\mu{\rm H}$ inductor in series with input Representative of Dual Input Ripple Current Figure 14

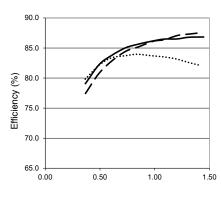

Representative of Dual Output Ripple Voltage Figure 15


Vin 16 to 40 to 16 VDC, full resistive load

Representative of Single Output Line Transient


FIGURE 16

Representative of Dual Output Load Transient FIGURE 17



Representative of Dual Output Turn-On Delay $F_{\text{IGURE}} \ \, \textbf{18}$

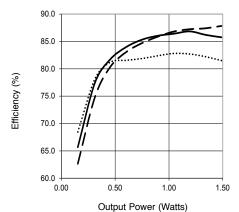
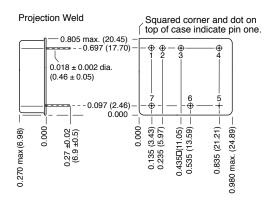

······ 16 Vin — 28 Vin — 40 Vin SLH2805D Efficiency

FIGURE 19

Output Power (Watts)
...... 16 Vin —— 28 Vin —— 40 Vin
SLH2812D Efficiency

FIGURE 20



······ 16 Vin — 28 Vin — 40 Vin SLH2815D Efficiency

FIGURE 21

28 VOLT INPUT - 1.5 WATT

BOTTOM VIEW CASE A2

Weight: 12 grams typical

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Kovar/Nickel/Gold Header Kovar/Nickel Cover

Kovar/Nickel/Gold matched glass seal Pins Gold plating of 50 - 225 microinches

included in pin diameter

Seal hole: 0.056 ±0.001 (1.42 ±0.03)

Case A2, Rev G, 2013.05.07

Please refer to the numerical dimensions for accuracy.

FIGURE 22: CASE A2

28 VOLT INPUT - 1.5 WATT

DC-DC CONVERTERS PROTOTYPE, CLASS H AND CLASS K, MIL-PRF-38534 ELEMENT EVALUATION

	NON-QML 1				
	Ркототуре	CLAS	ss H	CLASS K	
	/0	/-	/H		(
COMPONENT-LEVEL TEST PERFORMED	M/S ²	M/S 2	P 3	M/S 2	P 3
Element Electrical			-	-	
Visual			•	-	
Internal Visual				•	
Temperature Cycling				•	
Constant Acceleration				•	
Interim Electrical				•	
Burn-in				•	
Post Burn-in Electrical				•	
Steady State Life				•	
Voltage Conditioning Aging					
Visual Inspection					
Final Electrical		•	•	-	•
Wire Bond Evaluation		•	•	-	
SEM				-	

Notes

- 1. Non-QML products may not meet all of the requirements of MIL-PRF-38534.
- 2. M/S = Active components (Microcircuit and Semiconductor Die)
- 3. P = Passive components, Class H and K element evaluation. Not applicable to Space Prototype ("O") element evaluation.

Definitions

Element Evaluation: Component testing/screening per MIL-STD-883 as determined by MIL-PRF-38534 SEM: Scanning Electron Microscopy

TABLE 8: ELEMENT EVALUATION

28 VOLT INPUT - 1.5 WATT

DC-DC CONVERTERS PROTOTYPE, CLASS H AND CLASS K MIL-PRF-38534 ENVIRONMENTAL SCREENING AND RHA¹ P or R

	NON-QML ²		QN	IL ³		
	Ркототуре	CLA	ss H	CLAS	ss K	
TEST PERFORMED	/00	/HP	/HR	/KP	/KR	
Non-destruct wire bond pull, Method 2023		■ 4	■ 4	•		
Pre-cap Inspection, Method 2017, 2032	•	-	•	-	-	
Temperature Cycle (10 times)						
Method 1010, Cond. C, -65°C to +150°C, ambient	•	-	•		-	
Constant Acceleration						
Method 2001, 3000 g (Qual 5000 g)	-	•			-	
PIND, Test Method 2020, Cond. A		■ 4	■ 4			
Pre burn-in test, Group A, Subgroups 1 and 4		■ 4	■ 4		-	
Burn-in Method 1015, +125°C case, typical ⁵						
96 hours	•					
160 hours		•				
2 x 160 hours (includes mid-BI test)					-	
Final Electrical Test, MIL-PRF-38534, Group A,						
Subgroups 1 and 4: +25°C case	•					
Subgroups 1 through 6, -55°C, +25°C, +125°C case		-		•	-	
Hermeticity Test						
Gross Leak, Method 1014		-	•	•	-	
Fine Leak, Method 1014	•	-			-	
Radiography, Method 2012				•	-	
Post Radiography Electrical Test, +25°C case				■ 4	■ 4	
Final visual inspection, Method 2009	•	-			-	
RHA P: 30 krad(Si) total dose		-		•		
RHA R: 100 krad(Si) total dose						
SEE LET 86.3 MeV-cm ² /mg		-				

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

- Our Redmond facility has a DLA approved RHA plan for Interpoint power products. Our SMD products with RHA "R" code meet DLA requirements.
- "OO" prototypes are non-QML products and may not meet all of the requirements of MIL-PRF-38534. "O" in the RHA designator position in Interpoint model numbers indicates DLA RHA "-" defined as no RHA.
- 3. All processes are QML qualified and performed by certified operators.
- 4. Not required by DLA but performed to assure product quality.
- 5. Burn-in temperature designed to bring the case temperature to +125°C minimum. Burn-in is a powered test.

TABLE 9: ENVIRONMENTAL SCREENING AND RHA LEVELS

