28 VOLT INPUT – 5 AMP

FEATURES

Attenuation 70 dB at 500 kHz

- Operating temperature -55° to +125°C
- Qualified to MIL-PRF-38534 Class H and K
- Passive components used for maximum tolerance in space environments
- · Nominal 28 V input, 0 V to 50 V operation
- Up to 5 A throughput current
- · Compliant to MIL-STD-461C CE-03
- · Compatible with MIL-STD-704 A-E 28 VDC power bus

INPUT VOLTAGE AND CURRENT					
Model SFCS28-461	Current (A) 5				

DESCRIPTION

The Interpoint[™] SFCS28-461TM EMI Filter modules are specifically designed to reduce the reflected input ripple current of high frequency DC/DC converters. SFCS28-461 filters minimize electromagnetic interference (EMI) for Interpoint space application converters. These filters are intended for use in 28 volt applications which must meet MIL-STD-461 levels of conducted emissions. One filter can be used with multiple converters up to the rated throughput current of the filter.

SCREENING

The SFCS28-461 filter offers three screening options - Space Prototype (O), Class H, or Class K. Radiation tolerant to Radiation Hardness Assurance (RHA) levels of "-" (O) or "H", per MIL-PRF-38534. Interpoint model numbers use an "O" in the RHA designator position to indicate the "-" (dash) Radiation Hardness Assurance level of MIL-PRF-38534, which is defined as "no RHA". See "Screening Table 2: Environmental Screening" tables for more information.

INPUT RIPPLE AND EMI

Switching DC/DC converters naturally generate two noise components on the power input line: differential noise and common mode noise. Input ripple current refers to both of these components.

Differential noise occurs between the positive input and input common. Most Interpoint converters have an input filter that reduces differential noise which is sufficient for most applications. Common mode noise occurs across stray capacitance between the converter's power train components and the baseplate (bottom of the package) of the converter.

Where low noise currents are required to meet CE03 of MIL-STD-461C, a power line filter is needed. The SFCS28-461 Series of EMI power line filters reduces the common mode and differential noise generated by the converters. SFCS28-461 filters reduce input ripple current by at least 60 dB at 500 kHz, 1 MHz, and 5 MHz when used in conjunction with Interpoint DC/DC converters. The filter must be placed as close as possible to the converter for optimum performance. the baseplates of the filter and the converter should be connected with the shortest and widest possible conductors. For the best connection, mount the filter's and converter's baseplates on or above a small ground plane.

OPERATION AND TEMPERATURE

All SFCS28-461 filters are rated for full power operation from -55° C to $+125^{\circ}$ C case temperature. Current is derated linearly to zero at $+135^{\circ}$ C case temperature.

INSERTION LOSS

The maximum DC insertion loss at full load and nominal input voltage represents a power loss of less than 4%.

PACKAGING

SFCS28-461 filters are sealed in metal hermetic side-leaded packages. For more information contact your Interpoint representative.

Page 1 of 9 SFCS Rev D - 2011.11.07 Cleared by the U.S. Department of Defense (DoD) Office of Security Review (OSR)

for public release. OSR case number 11-S-3519, dated September 26, 2011.

28 VOLT INPUT – 5 AMP

OPERATING CONDITIONS AND CHARACTERISTICS

Input Voltage Range

0 to 50 VDC continuous for 28 V models

Lead Soldering Temperature (10 sec per pin) • 300°C

Storage Temperature Range (Case)

-65°C to +150°C

Case Operating Temperature (Tc)

- -55°C to +125°C full power
- -55°C to +135°C absolute

Derating Output Current

• Derate linearly from 100% at 125°C to 0% at 135°C case

Isolation

- 100 megohm minimum at 500 VDC
- · Any pin to case

MECHANICAL AND ENVIRONMENTAL

Size (maximum)

 3.005 x 1.505 x 0.400 inches (76.33 x 38.23 x 10.16 mm). Case U has straight, short leads. Case V has longer leads, bent down.

Weight (maximum)

110 grams maximum

Screening

- · Space Prototype (O), Class H, or Class K
- Radiation tolerant to Radiation Hardness Assurance (RHA) levels of "-" (O) or "H", per MIL-STD-38534. Interpoint model numbers use an "O" in the RHA designator position to indicate the "-" (dash) Radiation Hardness Assurance level of MIL-PRF-38534, which is defined as "no RHA".
- See Screening Tables 1 and 2 for more information. Available configurations: OO, HH, KH

28 VOLT INPUT - 5 AMP

PIN OUT				
Pin ¹	Designation			
1, 2, 3	Positive Input			
4, 5, 6	Input Common			
7, 8, 9	Output Common			
10, 11, 12	Positive Output			
Baseplate	Case Ground ²			

Notes

 All pins must be connected.
 The baseplate is the only case ground connection and should directly contact chassis ground.

Angled corner indicates pin one.

FIGURE 2: PIN OUT SFCS28-461

28 VOLT INPUT – 5 AMP

DLA NUMBERS				
DLA DRAWING (5915)	SFCS28-461 Similar Part			
00003-01HXC	SFCS28-461/HH			
00003-01KXC	SFCS28-461/KH			
For exact specifications for a DLA product, refer to the DLA drawing. DLA drawings can be downloaded from: http://www.landandmaritime.dla.mil/Programs/MilSpec/ default.aspx				

MODEL NUMBER OPTIONS ¹ To determine the model number ENTER ONE OPTION FROM EACH CATEGORY IN THE FORM BELOW						
CATEGORY	Base Model and Input Voltage	Case Option ² Screening ³ RHA				
OPTIONS	SFCS28-461	(side-leaded case, leave blank) V (leads bent down)	О Н К	О Н		
FILL IN FOR MODEL #	SFCS28-461	/	<u> </u>			

Notes:

1. See Model Numbering Key above for an example of a model number.

2. Case Options: For the standard case, Case U, leave the case option blank. For Case V with leads bent down, insert the letter V in the Case Option position.

 Screening: A screening level of O is a Space Prototype and is only used with RHA O. See Screening Tables 1 and 2 for more information. "H" indicates Class H and "K" indicates Class K of MIL-PRF-38534.
 RHA: Interpoint model numbers use an "O" in the RHA designator position to indicate the "-" (dash) Radiation Hardness

4. RHA: Interpoint model numbers use an "O" in the RHA designator position to indicate the "-" (dash) Radiation Hardness Assurance level of MIL-PRF-38534, which is defined as "no RHA." RHA O is only available with Screening level O. See Screening Table 2 for more information.

28 VOLT INPUT – 5 AMP

Electrical Characteristics: -55 TO +125°C $T_C^{}$, nominal Vin, unless otherwise specified.

		SFCS28-461			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT VOLTAGE	CONTINUOUS	0	28	50 ¹	VDC
	TRANSIENT 100 ms 1, 2, 3	—	—	100	V
NOISE REJECTION	500 kHz	60	70	-	
	1 MHz	60	70	—	dB
	5 MHz	60	70		
POWER DISSIPATION	MAX CURRENT T _C = 25°C	_	_	5 ¹	w
DC RESISTANCE (R _{DC})	T _C = 25°C @ 1 A	—	—	0.2	ohms
CAPACITANCE $T_C = 25^{\circ}C$	ANY PIN TO CASE	50	60	70	nF
OUTPUT VOLTAGE	STEADY STATE	$V_{OUT} = V_{IN} - I_{IN}(R_{DC})$		VDC	
OUTPUT CURRENT ¹	STEADY STATE	_	-	5 ¹	А

Notes

1. Guaranteed by design, not tested.

2. 28 V = 0.5 Ω source impedance.

3. The filter will not be damaged by a 100 volt transient but the transient will be passed on to the converter.

28 VOLT INPUT – 5 AMP

TOP VIEW CASE U*

Flanged case, short-leaded

*Does not require designator in Case Option position of model number.

FIGURE 32: CASE U

28 VOLT INPUT – 5 AMP

TOP VIEW CASE V*

Flanged case, down leaded

*Designator "V" required in Case Option position of model number.

Case dimensions in inches (mm)

Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header	Cold Rolled Steel/Nickel/Gold
Cover	Kovar/Nickel
Pins	#52 alloy/Gold, compresssion glas seal
	Seal Hole: 0.120 ±0.002 (3.05 ±0.05)

Case V, Rev F, 2010624 Please refer to the numerical dimensions for accuracy.

FIGURE 33: CASE V

28 VOLT INPUT – 5 AMP

EMI FILTERS PROTOTYPE, CLASS H AND CLASS K, MIL-PRF-38534 ELEMENT EVALUATION

	NON-QML ¹	QML			
	PROTOTYPE	CLA	ss H	CLAS	ss K
	/0	/H		/К	
COMPONENT-LEVEL TEST PERFORMED	M/S ²	M/S ²	Р ³	M/S ²	Р ³
Element Electrical					
Visual					
Internal Visual					
Temperature Cycling					
Constant Acceleration					
Interim Electrical					
Burn-in					
Post Burn-in Electrical					
Steady State Life					
Voltage Conditioning Aging					
Visual Inspection					
Final Electrical					
SEM					

Notes:

1. Non-QML products may not meet all of the requirements of MIL-PRF-38534.

2. M/S = Active components (Microcircuit and Semiconductor Die)

3. P = Passive components, Class H and K element evaluation. Not applicable to Space Prototype ("O") element evaluation.

Definitions:

Element Evaluation: Component testing/screening per MIL-STD-883 as determined by MIL-PRF-38534 SEM: Scanning Electron Microscopy

SCREENING TABLE 1: ELEMENT EVALUATION

28 VOLT INPUT – 5 AMP

EMI FILTERS PROTOTYPE, CLASS H AND CLASS K, MIL-PRF-38534 ENVIRONMENTAL SCREENING AND RHA¹

	NON-QML ²	QML ³		
	-	CLASS H	CLASS K	
TEST PERFORMED	/00	/HH ⁴	/KH ⁴	
Pre-cap Inspection, Method 2017, 2032				
Temperature Cycle (10 times)				
Method 1010, Cond. C, -65°C to +150°C, ambient	-	-	-	
Constant Acceleration				
Method 2001, 3000 g (Qual 5000 g)	-	-	-	
PIND, Test Method 2020, Cond. A		∎ 5		
Pre burn-in test, Group A, Subgroups 1 and 4				
Burn-in Method 1015, +125°C case, typical ⁶				
96 hours	-			
160 hours				
2 x 160 hours (includes mid-BI test)				
Final Electrical Test, MIL-PRF-38534, Group A,				
Subgroups 1 and 4: +25°C case	-			
Subgroups 1 through 6, -55°C, +25°C, +125°C case				
Hermeticity Test				
Gross Leak, Method 1014	-	-	-	
Fine Leak, Method 1014				
Radiography, Method 2012				
Post Radiography Electrical Test, +25°C case			∎ 5	
Final visual inspection, Method 2009				
Radiation tolerant- Tested lots up to 1,000 krad(Si) total dose, applies to EMI filters only				

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes:

- 1. Our Redmond site has a DLA approved RHA plan for Interpoint power products.
- "OO" prototypes are non-QML products and may not meet all of the requirements of MIL-PRF-38534. "O" in the RHA designator position in Interpoint model numbers indicates DLA RHA "-" defined as no RHA.
- 3. All processes are QML qualified and performed by certified operators.
- Our EMI filters are designed exclusively with passive components providing maximum tolerance for space environment requirements.
- Not required by DLA but performed to assure product quality.
 Burn-in temperature designed to bring the case temperature to
- +125°C minimum. Burn-in is a powered test.

SCREENING TABLE 2: ENVIRONMENTAL SCREENING

SCFS28-461 EMI Input Filters, SFCS Rev D - 2011.11.07. This revision supersedes all previous releases. All technical information is believed to be accurate, but no responsibility is assumed for errors or omissions. Crane Electronics, Inc. reserves the right to make changes in products or specifications without notice. Interpoint and SFCS28-461 are trademarks of Crane Electronics, Inc. Copyright © 1999 - 2011 Crane Electronics, Inc. All rights reserved. www.craneae.com/interpoint

