FEATURES

- -55° to +125°C operation
- 16 to 40 VDC input
- · Fully isolated
- · Optocoupler feedback
- Fixed frequency, 550 kHz typical (400 kHz typ. 60 V output model)
- Topology Flyback
- . 50 V for up to 50 ms transient protection
- · Inhibit function
- · Indefinite short circuit protection
- Up to 76% efficiency, 16 W/in³

MSA SERIES 5 WATT

MOD VDC O	ELS					
SINGI F	DUAL					
5	±5					
5.2 12	±12					
15	±15					
60						

Size (max.): 1.075 x 1.075 x 0.270 inches (27.31 x 27.31 x 6.86 mm)

Weight: 15 grams maximum.

Screening: Standard, ES, or 883 (Class H).

DESCRIPTION

The MSA Series[™] of high frequency DC/DC converters offers a new standard of performance for low power, military/aerospace grade DC/DC converters. MSA parts provide up to 5 watts output power over the full military temperature range with up to 76% efficiency. Thick-film hybrid techniques provide military/aerospace reliability levels and optimum miniaturization. The hermetically sealed case is only 1.075 by 1.075 inches — with a height of only 0.270 inches. Power density for the MSA Series parts is 16 watts per cubic inch.

The MSA Series' small size, low height, and hermetically sealed metal enclosures make them ideal for use in military, aerospace and other high reliability applications. Units are available with standard, screening, "ES", and fully compliant SMD "883" screening. See page 8 for screening options and descriptions.

CONVERTER DESIGN

The MSA converters are switching regulators that use a flyback converter design with a constant switching frequency of 550 kHz. They are regulated, isolated units using a pulse width modulated topology and built as high reliability thick-film hybrids. Isolation between input and output circuits is provided with a transformer in the forward power path and an optical link in the feedback control loop. Excellent input line transient response and audio rejection is achieved by an advanced feed-forward compensation technique. Negative output regulation is maintained by tightly coupled magnetics. Up to 4 watts, 80% of the total output power, is available from either output, provided that the opposite output is simultaneously carrying 20% of the total power. Each output must carry a minimum of 20% of the total output power in order to maintain specified regulation on the negative output. Predictable current limit is accomplished by direct monitoring of the output load current, which results in a constant current output above the overload point. Internal input and output filters eliminate the need for external capacitors.

WIDE VOLTAGE RANGE

The MSA converters are designed to provide full power operation over a full 16 to 40 VDC voltage range. Operation below 16 volts, including MIL-STD-704E emergency power conditions is possible with derated power. Please refer to the low line dropout graphs (Figures 17 and 18) for details. A low voltage lockout feature keeps the converter shutdown below approximately 13 VDC to ensure smooth initialization.

IMPROVED DYNAMIC RESPONSE

The MSA feed-forward compensation system provides excellent dynamic response and noise rejection. Audio rejection is typically 50 dB. The minimum to maximum step line transient response is typically less than 1%.

INHIBIT FUNCTION

MSA converters provide a TTL open collector-compatible inhibit feature that can be used to disable internal switching and inhibit the unit's output. Inhibiting in this manner results in low standby current, and no generation of switching noise.

The converter is inhibited when the TTL compatible low (\leq 0.8 V) is applied to the inhibit pin. The unit is enabled when the pin, which is internally connected to a pull-up resistor, is left unconnected or is connected to an open collector gate. The open circuit output voltage associated with the inhibit pin is 9 to 11 V. In the inhibit mode, a maximum of 4 mA must be sunk from the inhibit pin.

UNDERVOLTAGE LOCKOUT AND TRANSIENT PROTECTION

Undervoltage lockout helps keep system current levels low during initialization or re-start operations. They can withstand short term transients of up to 50 volts without damage.

MSA SERIES 5 WATT

DC/DC CONVERTERS

ABSOLUTE MAXIMUM RATINGS

Input Voltage

16 to 40 V

Output Power

5 watts

Lead Soldering Temperature (10 sec per lead)

• 300°C

Storage Temperature Range (Case)

• -65°C to +135°C

INHIBIT

Inhibit TTL Open Collector

- Logic low (output disabled)
 Logic low voltage ≤0.8 V max
- Inhibit pin current 4 mA max
 Referenced to input common
- Logic high (output enabled)
 Open collector

RECOMMENDED OPERATING CONDITIONS Input Voltage Range

- · 16 to 40 VDC continuous
- 50 V for up to 50 msec transient

Case Operating Temperature (Tc)

- -55°C to +125°C full power
- -55°C to +135°C absolute

Derating Output Power/Current (Tc)

Linearly from 100% at 125°C to 0% at 135°C

TYPICAL CHARACTERISTICS

Output Voltage Temperature Coefficient

100 ppm/°C typical

Input to Output Capacitance

• 50 pF typical

Isolation

100 megohm minimum at 500 V

Audio Rejection

• 50 dB typical

Conversion Frequency

• 550 kHz typical (400 kHz 60 V model) 450 kHz min, 600 kHz max

350 kHz min, 450 kHz max 60 V model Inhibit Pin Voltage (unit enabled)

• 9 to 11 V

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, unless otherwise specified.

SINGLE OUTPUT MODELS			MSA2805S		MSA285R2S		R2S	MSA2812S		MSA2815S			MSA2860S ¹				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	Tc = -55°C TO +125°C	4.95	5.00	5.05	5.15	5.20	5.25	11.88	12.00	12.12	14.85	15.00	15.15	59.1	60.00	60.9	VDC
OUTPUT CURRENT																	
Tc = -55°C $TO + 125$ °C	V _{IN} = 16 TO 40 VDC	0	_	1000	0	_	962	0	_	417	0	_	333	0	_	20	mA
OUTPUT POWER	V _{IN} = 16 TO 40 VDC																
	Tc = -55°C TO +125°C	—	_	5	l —	_	5	—	_	5	—	_	5	_	_	1.2	W
OUTPUT RIPPLE																	
VOLTAGE	10 kHz - 2 MHz	_	125	350	l —	110	335	_	50	200	_	50	170	_	_	300	mV p-p
LINE REGULATION	V _{IN} = 16 TO 40 VDC																
	Tc = -55°C TO +125°C	_	10	50 ²	l —	10	50	_	10	50	_	10	50	_	_	300	mV
LOAD REGULATION	NO LOAD TO FULL																
	Tc = -55°C TO +125°C	_	10	50	_	10	50	_	10	50	_	10	50	_	_	300	mV
INPUT VOLTAGE	Tc = -55°C TO +125°C																
NO LOAD TO FULL	CONTINUOUS	16	28	40	16	28	40	16	28	40	16	28	40	16	28	40	VDC
	TRANSIENT 50 ms	0	_	50	0	_	50	0	_	50	0	_	50	0	_	50	V
INPUT CURRENT	NO LOAD	_	27	40	_	28	40	_	29	42	_	31	44	_	_	30	
$Tc = -55^{\circ}C TO +125^{\circ}C$	FULL LOAD	_	250	_	_	250	_	_	235	_	_	235	_	_	72	_	mA
	INHIBITED	_	3	5	_	3	5	_	3	5	_	3	5	_	3	5	
INPUT RIPPLE	10 kHz - 10 MHz	_	25	100	_	25	100	—	25	100	_	25	100	_	_	90	mA p-p
CURRENT	Tc = -55°C TO +125°C	_	30	150	_	30	150	_	30	150	_	30	150	_	_		
EFFICIENCY		66	71	_	66	71	_	70	76	_	71	76	_	70	75	_	%
LOAD FAULT ^{3, 4}	POWER DISSIPATION		1.5	2.0	_	1.5	2.0	_	1.2	1.9	_	1.2	1.8	_	_	_	W
SHORT CIRCUIT	RECOVERY		12.5	25	_	1.5	25	_	1	10	_	1	10	_	_		ms
STEP LOAD	50% - 100% - 50%																
RESPONSE ^{4, 5}	TRANSIENT		100	250		100	250		150	375		200	500			_	mV pk
	RECOVERY		100	250		100	250		200	500		200	500	_	_		μs
STEP LINE	TRANSIENT																
RESPONSE4, 5	16 TO 40 V _{IN}	—	50	150	_	50	150	-	80	200	—	50	125	_	_	_	mV pk
	40 TO 16 V _{IN}	_	50	150	_	50	150	l —	100	250	_	50	125	_	_	_	- IIIV pk
	RECOVERY																
	16 TO 40 V _{IN}	_	100	250	_	100	250	—	250	625	—	250	625	_	_	_	
	40 TO 16 V _{IN}	_	200	500	_	200	500	-	250	625	_	250	625	_	_	_	_ µs
START-UP	DELAY	_	10	25	_	10	25	_	3	10	_	3	10	_	_	_	ms
	OVERSHOOT	_	0	50	_	0	50	_	0	120	_	0	150	_	_	_	mV pk

Notes

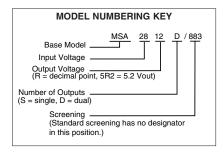
- MSA2860S specifications are at 25°Tc only, contact your Interpoint representative for more information on over temperature specs.
- 2. Line regulation for /ES and non /ES 2805S models at 16 to 17 $\rm V_{IN}$ and 110 $^{\circ}{\rm C}$ to 125°C (case) is 5% (max).
- 3. Indefinite short circuit protection not guaranteed above 125°C (case).
- Recovery time is measured from application of the transient to point at which V_{OUT} is within 1% of V_{OUT} at final value.
- Transition time >10μs.

MSA SERIES 5 WATT

Electrical Characteristics: 25°C Tc, 28 VDC Vin, 100% load, unless otherwise specified.

DUAL OUTPUT MODELS				MSA 2805D			MSA2812D			MSA2815D			
PARAMETER	COND	TIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
OUTPUT VOLTAGE		+V _{OUT}	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC	
		-V _{OUT}	4.9	5.0	5.1	11.76	12.00	12.24	14.70	15.00	15.30	100	
OUTPUT CURRENT ¹	V _{IN} = 16 t	o 40 VDC											
		to +125°C	-	±500	800	_	±208	333	_	±167	267	mA	
OUTPUT POWER ¹	V _{IN} = 16 t Tc = -55°C	o 40 VDC to +125°C	_	_	5	_	_	5	_	_	5	w	
OUTPUT RIPPLE VOLT.	10 kHz	- 2 MHz	_	_	150	_	40	140	_	60	150	mV p-p	
LINE REGULATION	Tc = -55°C	to +125°C											
Vin = 16 to 40 VDC		+V _{OUT}	_	10	25	_	10	50	_	10	50		
	_	-V _{OUT}	<u> </u>	40	75	_	40	180	_	40	180	mV	
LOAD REGULATION	Tc = -55°C	to +125°C											
NO LOAD TO FULL		+V _{OUT}	_	10	50	_	10	50	_	10	50		
	_	-V _{OUT}	 	50	200	_	50	200	_	50	200	mV	
CROSS REGULATION ²	+P _O = 20 - 80 %	, -P _O = 80 - 20%	_	10	20		8	15		7	15		
	-P _O = 20 - 80 %	, +P _O = 80 - 20%										%	
	+P _O = 50 - 10	%, -P _O = 50%	l _	5	8	_	3.7	6		3	6		
	-P _O = 50 - 10	%, +P _O = 50%	-	3	0		3.7	O		3	0		
INPUT VOLTAGE	NO LOAD TO FULL "CONTINUOUS												
$Tc = -55^{\circ}C \text{ to } +125^{\circ}$			16	28	40	16	28	40	16	28	40	VDC	
	TRANSIEN	_	_	50	_	_	50	_	_	50	V		
INPUT CURRENT	NO LOAD		-	30	35	_	33	58	_	38	60		
$Tc = -55^{\circ}C \text{ to } +125^{\circ}C$	FULL LOAD		-	248	_	_	235	_	_	235	_	mA	
	INHIE	_	3	5	_	3	5	_	3	5			
INPUT RIPPLE	10 kHz T	O 10 MHz	-	25	80	_	25	100	_	25	100	mA p-p	
CURRENT	Tc = -55°C	to +125°C	-	30	160	_	30	150	_	30	150	під р-р	
EFFICIENCY			68	72		69	75		70	75		%	
LOAD FAULT ^{3, 4}		SSIPATION CIRCUIT	_	1.3	1.8	_	1.3	1.7	_	1.3	1.6	w	
	RECOVERY		l –		50	_	1	10	_	1	10	ms	
STEP LOAD	50% - 100% - 5	0% BALANCED											
RESPONSE ^{4, 5}	TRAN	SIENT	_	_	±150	_	- ±300	±750	-	±300	±750	mV	
	RECC	VERY	_	_	100	_	200	500	_	500	1250	μs	
STEP LINE RESP. ^{4, 5}		16 TO 40 VDC	_	_	±750	_	±50	±125	_	±150	±375	m\/ n!	
	TRANSIENT	40 TO 16 VDC	T —	_	±500	_	±50	±125	_	±100	±250	mV pk	
	DEOCY (ED) :	16 TO 40 VDC	T —	_	1200	_	150	375	<u> </u>	250	625	— μs	
	RECOVERY	40 TO 16 VDC	T -		1200	_	400	1000	_	800	2000		
START-UP	DE	_AY	_	_	25	_	3	10	_	3	10	ms	
	OVERS	SHOOT	Ι —	_	500	_	0	120	_	0	150	mV pk	

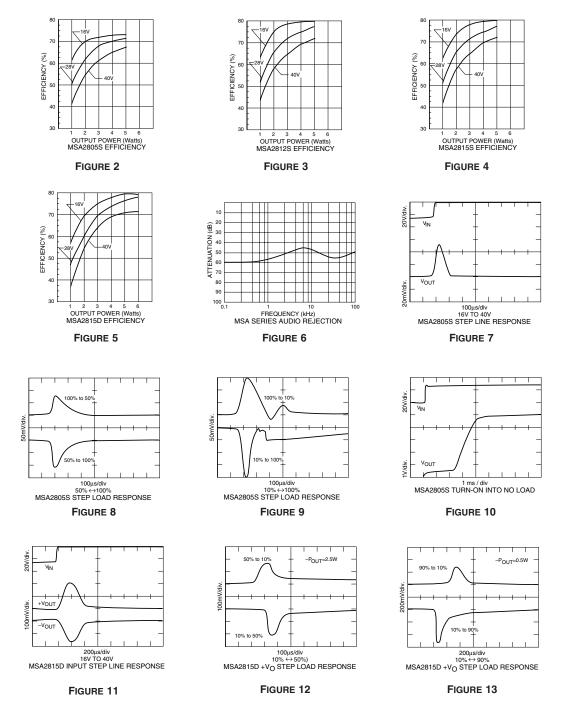
Notes


- Up to 4 watts (80% of full power) is available from either output providing the opposite output is carrying 20% of total power.
- Shows regulation effect on the minus output during the defined cross loading conditions. See Figures 15 and 16.
- 3. Indefinite short circuit protection not guaranteed above 125°C (case).
- 4. Recovery time is measured from application of the transient to point at which V_{OUT} is within 1% of V_{OUT} at final value.
- 5. Transition time >10µs.

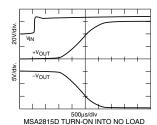
MSA SERIES 5 WATT

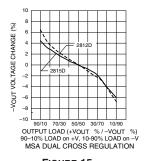
DC/DC CONVERTERS

	PIN OUT									
Pin	Single Output	Dual Output								
1	Positive Output	Positive Output								
2	Output Common	Output Common								
3	No connection	Negative Output								
4	No connection	No connection								
5	Inhibit	Inhibit								
6	Positive Input	Positive Input								
7	Input Common	Input Common								
8	Case Ground	Case Ground								
	Squared corner and dot on top of package indicate pin one.									
	MSA 8 7 6									
	6 ⊙									
Figu	See page 7 for dimensions. FIGURE 1: PIN OUT BOTTOM VIEW									



SMD NUMBERS								
STANDARD MICROCIRCUIT MSA SERIES								
DRAWING (SMD)	SIMILAR PART							
5962-9309201HXC	MSA2805S/883							
IN PROCESS	MSA285R2S/883							
5962-9309301HXC MSA2812S/883								
5962-9309401HXC	MSA2815S/883							
5962-0052201HXC	MSA2860S/883							
5962-9308901HXC	MSA2812D/883							
5962-9309001HXC	MSA2815D/883							
For exact specifications for an SMD product, refer to the SMD drawing. Call your Interpoint representative for status on MSA SMD releases. "883" suffix indicates SMD similar part. SMDs can be downloaded from: http://www.dscc.dla.mil/programs/smcr								


MSA SERIES 5 WATT


Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, unless otherwise specified.

Typical Performance Curves: 25°C Tc, 28 VDC Vin, 100% load, unless otherwise specified.

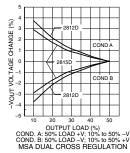
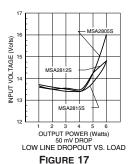
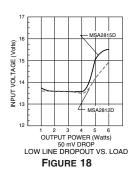
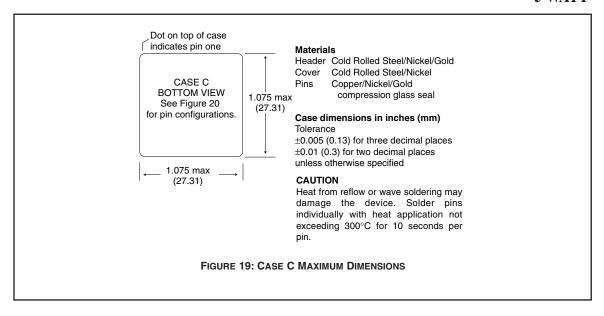
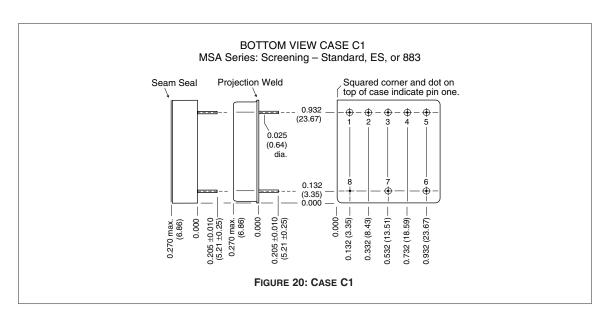




FIGURE 14




FIGURE 16

MSA SERIES 5 WATT

Note: Although every effort has been made to render the case drawings at actual size, variations in the printing process may cause some distortion. Please refer to the numerical dimensions for accuracy.

MSA SERIES 5 WATT

DC/DC CONVERTERS

ENVIRONMENTAL SCREENING

TEST (125°C Products)	STANDARD	/ES	/883 (Class H)*
PRE-CAP INSPECTION			
Method 2017, 2032	yes	yes	yes
TEMPERATURE CYCLE (10 times)			
Method 1010, Cond. C, -65°C to 150°C	no	no	yes
Method 1010, Cond. B, -55°C to 125°C	no	yes	no
CONSTANT ACCELERATION			
Method 2001, 3000 g	no	no	yes
Method 2001, 500 g	no	yes	no
BURN-IN			
Method 1015, 160 hours at 125°C	no	no	yes
96 hours at 125°C case (typical)	no	yes	no
FINAL ELECTRICAL TEST MIL-PRF-38534, Group A			
Subgroups 1 through 6: -55°C, +25°C, +125°C	no	no	yes
Subgroups 1 and 4: +25°C case	yes	yes	no
HERMETICITY TESTING			
Fine Leak, Method 1014, Cond. A	no	yes	yes
Gross Leak, Method 1014, Cond. C	no	yes	yes
Gross Leak, Dip (1 x 10 ⁻³)	yes	no	no
FINAL VISUAL INSPECTION			
Method 2009	yes	yes	yes

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Contact Information: www.interpoint.com

Interpoint Headquarters USA

Phone: 1-800-822-8782

+425-882-3100

Email: power@intp.com

Interpoint UK Interpoint France

Phone: +44-1252-815511 Phone: +33-134285455
Email: poweruk@intp.com Email: powerfr@intp.com

^{*883} products are built with element evaluated components and are 100% tested and guaranteed over the full military temperature range of -55°C to +125°C.