270 VOLT INPUT - 65 WATT

FEATURES

Parallel operation with current share, up to 5 units (up to 276 watts)

- · Operating range -55° to +100°C
- · Input voltage 160 to 400 VDC
- · Transient protection 450 V for 50 ms
- · Fully isolated, magnetic feedback
- · Fixed high frequency switching
- · Remote sense on single models
- · Inhibit primary side and secondary side
- · Sync In and Sync Out
- · Indefinite short circuit protection
- High power density, up to 85% efficiency

MODELS VDC ОUTPUT							
SINGLE	DUAL						
5	±5						
12	±12						
15 ±15							
28							

DESCRIPTION

The MHP270 Series™ DC/DC converters provide up to 65 watts of output power over -55°C to +100°C temperature range. MHP270 models operate from a MIL-STD-704 nominal 270-volt DC power bus with 160 to 400 VDC continuous operation with surges to 450 volts. Isolated outputs include 5, 12, 15, and 28 VDC singles and ±5, ±12 and ±15 VDC duals. Parallel operation for all loading conditions is supported without any requirement for external components. The converters are available with standard screening or "ES" screening

MHP270 DC/DC converters are constant frequency, pulse width modulated switching power supplies which use a quasi-square wave, two-switch single-ended forward converter design. Tight load regulation is achieved through a wide-bandwidth magnetic feedback circuit.

Up to five single output MHP270 converters may be used in parallel to power a single load by simply connecting the share pins of all units. Units in this configuration have an 85% current sharing accuracy over 35% load to full load conditions.

MHP270 Series of converters feature a flexible synchronization scheme in which units may be synchronized to an external clock or to one another by using Sync In and Sync Out pins provided on each unit. MHP270 converters have a nominal switching frequency of 525 kHz, but may be synchronized at any frequency from 475 to 575 kHz.

MHP270 converters meet a wide variety of military/aerospace performance and environmental specifications. Their continuous operation input voltage (160 to 400) meets the normal operating

limits of MIL-STD-704. The unit shuts down above approximately 425 volts, but it is rated to withstand a surge of up to 450 volts for 50 milliseconds. The units are built as fully hermetic thick film hybrids in our MIL-PRF-38534 certified facilities.

FEATURES

Undervoltage lock-out – shuts down when the input line voltage falls below approximately 120 VDC to provide smooth initialization.

Continuous short circuit protection – current limit set at approximately 125%.

Soft-start $\,-\,$ controlled start-up at turn-on, release from inhibit and recovery from load fault conditions.

Remote sense – Sense lines increase the output voltage to compensate for IR drops in traces and wires. The voltage compensation can be up to a maximum of 10% of nominal output voltage to maintain tightly regulated voltage at the load.

OUTPUT VOLTAGE OPTIONS

The MHP270 Series converters are capable of providing other output voltage options in addition to those characterized on this datasheet. Contact your sales representative to discuss other output voltage options, www.craneae.com/interpoint/contacts.

US PATENTS

Interpoint converters may use one or more of the following US patents 5,521,807, 5,694,303, and 5,631,822.

270 VOLT INPUT - 65 WATT

OPERATING CONDITIONS AND CHARACTERISTICS

Input Voltage Range

- · 160 to 400 VDC continuous
- · 450 VDC for 50 msec transient

Output Power

• 50 to 65 watts depending on model

Lead Soldering Temperature (10 sec)

• 300°C

Storage Temperature Range (Tc)

• -65°C to +150°C

Case Operating Temperature (Tc)

-55 to +100°C full power

Output Voltage Temperature Coefficient

• 100 ppm/°C typical

Current Limit

· 125% of full load typical

Isolation

· 100 megohm minimum at 500 V

Conversion Frequency

- · Free run mode 525 kHz typical
- ► 475 kHz. min., 575 kHz max
- · External sync range: 475 to 575 kHz

Low Line Drop Out

- · Vout drops 1% of nominal
- Input voltage 155 VDC max

Undervoltage Lockout

· Input voltage 110 VDC min

SYNC AND INHIBIT

Sync

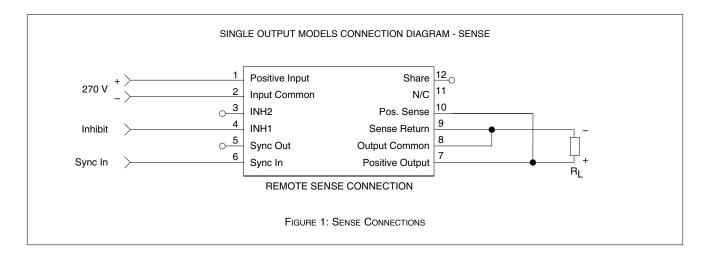
- · Sync In
 - ► Input frequency 475 to 575 kHz.
 - ► Duty cycle 40% min, 60% max
 - Active low 0.8 V max
 - Active high 4.5 V min, 10 V max
 - Referenced to input common
- Sync Out
 - ► Referenced to input common

Inhibit (INH1, INH2)

- In Share (parallel mode) use a common inhibit signal for all converters
- · Active low (output disabled)
 - INH1 referenced to input common Active low 0.8 V max Inhibit pin will source 15 mA max
 - INH2 referenced to output common Active low 0.2 V max
 Inhibit pin will source 15 mA max
- Active high (output enabled)
 - Open collector
 - Open pin voltage: INH1 = 12V typ, INH2 = 5 V typ

MECHANICAL AND ENVIRONMENTAL

Size (maximum)


- 3.005 x 1.505 x 0.400 inches (76.33 x 38.23 x 10.16 mm)
- · See case U for dimensions.

Weight (maximum)

· 86 grams max

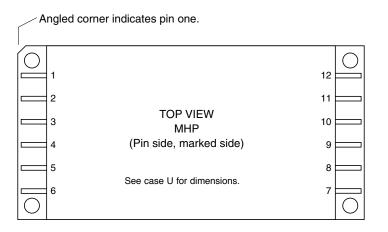
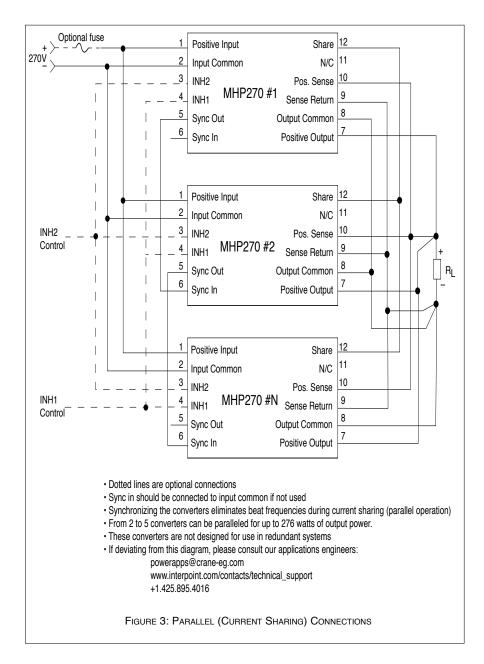
Screening

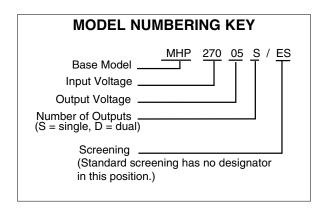
• Standard or ES. See Screening Table 1 for more information.

270 VOLT INPUT - 65 WATT

PIN OUT							
Pin	Single Output	Dual Output					
1	Positive Input	Positive Input					
2	Input Common	Input Common					
3	Inhibit 2 (INH2)	Inhibit 2 (INH2)					
4	Inhibit 1 (INH1)	Inhibit 1 (INH1)					
5	Sync Out	Sync Out					
6	Sync In	Sync In					
7	Positive Output	Positive Output					
8	Output Common	Output Common					
9	Sense Return	Negative Output					
10	Positive Sense	No connection					
11	No connection	No connection					
12	Share	Share					

PINS NOT IN USE							
Inhibit (INH1, INH2) Leave unconnected							
Sync Out Leave unconnected							
Sync In Connect to input commo							
Share Leave unconnected							
Sense Lines	Must be connected to appropriate outputs						


FIGURE 2: PIN OUT

270 VOLT INPUT - 65 WATT

SINGLE OUTPUT MODELS CONNECTION DIAGRAM - PARALLEL

270 VOLT INPUT - 65 WATT

MODEL SELECTION On the lines below, enter one selection from each category to determine the model number.									
CATEGORY	MHP270 Base Model and Input Voltage	Output Voltage	Number of Outputs ¹	1	Screening ²				
OFI FOTION	MHP270 is the only	05, 12, 15, 28	S		(STANDARD leave blank)				
SELECTION	available selection	05, 12, 15	D		ES				

- Number of Outputs: S is a single output and D is a dual output
 Screening: For standard screening leave the screening option blank. For the ES screening option, insert the ES in the screening level option.
 For more information see Screening Tables 1.

270 VOLT INPUT - 65 WATT

Electrical Characteristics: 25°C Tc, 270 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OUTPUT MODELS		М	HP2700	5S	M			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		4.95	5.00	5.05	11.88	12.00	12.12	VDC
OUTPUT CURRENT	Vin = 160 to 400 VDC	0	_	10	0	_	5	Α
OUTPUT POWER	Vin = 160 to 400 VDC	0	_	50	0	_	60	W
OUTPUT RIPPLE	10 кHz - 2 MHz	_	_	50	_	_	80	mV p-p
LINE REGULATION ²	V _{IN} = 160 TO 400 VDC	_	_	50	_	_	120	mV
LOAD REGULATION ²	NO LOAD TO FULL	_	_	50	_	_	120	mV
INPUT VOLTAGE	CONTINUOUS	160	270	400	160	270	400	VDC
	TRANSIENT 50 msec. 1, 3	_	_	450	_	_	450	V
INPUT CURRENT	NO LOAD	_	_	20	_	_	20	
	INHIBITED-INH1	_	_	8	_	_	8	mA
	INHIBITED-INH2	_	_	15	_	_	15	
INPUT RIPPLE CURRENT	10 кНz - 10 MHz	_	_	60	_	_	60	mA p-p
EFFICIENCY		76	_	_	81	_	_	%
LOAD FAULT	POWER DISSIPATION SHORT CIRCUIT	_	_	30	_	_	35	W
STEP LOAD RESPONSE	50% - 100% - 50% TRANSIENT	_	_	300	_	_	700	mV pk
	RECOVERY ⁴	_	_	300	_	_	500	μs
CAPACITIVE LOAD 1	NO EFFECT ON DC							
	PERFORMANCE	_	_	1000	_	_	500	μF

Notes

- 1. Guaranteed by design, not tested.
- 2. Load and line transition time > 10 μ s
- Unit will shut down above approximately 425V but will be undamaged and will restart when voltage drops into normal range.
- 4. Recovery time is measured from application of the transient to point the point at which Vout is within 1% of final value.

270 VOLT INPUT - 65 WATT

Electrical Characteristics: 25°C Tc, 270 VDC Vin, 100% load, free run, unless otherwise specified.

SINGLE OU	TPUT MODELS	MI	HP2701	5S	MI	HP2702	8S		
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
OUTPUT VOLTAGE		14.85	15.00	15.15	27.72	28.00	28.28	VDC	
OUTPUT CURRENT	VIN = 160 TO 400 VDC	0	_	4.33	0	_	2.32	Α	
OUTPUT POWER	VIN = 160 TO 400 VDC	0	_	65	0	_	65	W	
OUTPUT RIPPLE	10 кHz - 2 MHz	_	_	90	_	_	280	mV p-p	
LINE REGULATION 2	V _{IN} = 160 TO 400 VDC	_	_	150	_	_	280	mV	
LOAD REGULATION 2	NO LOAD TO FULL	_	_	150	_	_	280	mV	
INPUT VOLTAGE	CONTINUOUS	160	270	400	160	270	400	VDC	
	TRANSIENT 50 msec. 1, 3	_	_	450	_	_	450	V	
INPUT CURRENT	NO LOAD	_	_	20	_	_	20		
	INHIBITED-INH1	_	_	7	_	_	8	mA	
	INHIBITED-INH2	_	_	15	_	_	15		
INPUT RIPPLE CURRENT	10 кНz - 10 MHz	_	_	65	_	_	70	mA p-p	
EFFICIENCY		80	_	_	80	_	_	%	
LOAD FAULT	POWER DISSIPATION SHORT CIRCUIT	_	_	45	_	_	45	W	
STEP LOAD RESPONSE	50% - 100% - 50% TRANSIENT	_	_	700	_	_	1800	mV pk	
	RECOVERY ⁴	_	_	300	_	_	1000	μs	
CAPACITIVE LOAD 1	NO EFFECT ON DC								
	PERFORMANCE	_	_	500	_	_	500	μ F	

Notes

^{1.} Guaranteed by design, not tested.

^{2.} Load and line transition time > 10 μ s

Unit will shut down above approximately 425V but will be undamaged and will restart when voltage drops into normal range.

^{4.} Recovery time is measured from application of the transient to point the point at which Vout is within 1% of final value.

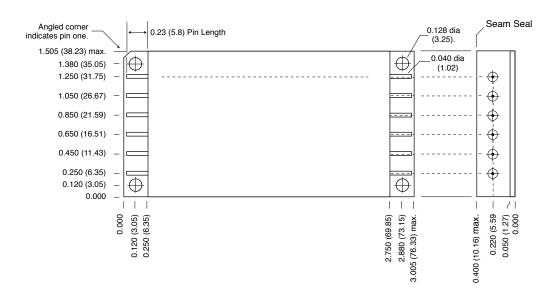
270 VOLT INPUT - 65 WATT

Electrical Characteristics: 25°C Tc, 270 VDC Vin, 100% load, free run, unless otherwise specified.

DUAL OUTPU	JT MODELS ²	МІ	HP2700	5D	MI	HP2701	2D	МІ	HP2701	5D	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+Vout	4.95	5.00	5.05	11.88	12.00	12.12	14.85	15.00	15.15	VDC
OUT OF VOLIMAL	-Vout	4.92	5.00	5.08	11.82	12.00	12.18	14.77	15.00	15.23	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
OUTPUT CURRENT ³	Еасн Оитрит	_	±5	8.0 ¹	_	±2.5	4.0 ¹	_	±2.17	3.46 ¹	Α
VIN = 160 TO 400 VDC	TOTAL	_	_	10	_	_	5	_	_	4.33	, ,
OUTPUT POWER 3	Еасн Оитрит	_	_	40 ¹	_	_	48 ¹	_	_	52 ¹	W
VIN = 160 TO 400 VDC	TOTAL	_	_	50	_	_	60	_	_	65	
OUTPUT RIPPLE ±V _{OUT}	10 кHz - 2 MHz	_	50	100	_	50	125	_	50	125	mV p-p
LINE REGULATION ⁴ ±V _{OUT}	V _{IN} = 160 TO 400 VDC	١	_	100	_	_	120	_	_	150	mV
LOAD REGULATION ^{4, 5} ±V _{OUT}	NO LOAD TO FULL	ı	_	100	_	_	120	_	_	150	mV
CROSS REGULATION 6	EFFECT ON -VOUT	-	_	1000	_	_	800	_	_	750	mV
INPUT VOLTAGE	CONTINUOUS	160	270	400	160	270	400	160	270	400	VDC
	TRANSIENT 50 msec. ^{1, 7}	0	_	450	0	_	450	0	_	450	V
	NO LOAD	_	_	20	_	_	20	_	_	20	
INPUT CURRENT	INHIBITED-INH1	_	_	8	_	_	8	_	_	8	mA
	INHIBITED-INH2	_	_	15	_	_	15	_	_	15	
INPUT RIPPLE CURRENT	10 κHz - 10 MHz	_	_	60	_	_	60	_	_	65	mA p-p
EFFICIENCY	BALANCED LOAD	74	_	_	81	_	_	82	_	_	%
LOAD FAULT	POWER DISSIPATION SHORT CIRCUIT	-	_	30	_	_	35	_	_	45	W
STEP LOAD RESPONSE	50% - 100% - 50% ⁸ TRANSIENT	_	_	300	_	_	900	_	_	900	mV pk
±V _{OUT}	RECOVERY 9	_	_	300	_	_	300	_	_	300	μs
CAPACITIVE LOAD 1	NO EFFECT ON DC										
	PERFORMANCE	_	_	_	-	_	500	_	_	500	μ F

Notes

- 1. Guaranteed by design, not tested.
- 2. Share operation not characterized for dual outputs.
- 3. Up to 80% of the total output power is available from either output provided that the opposite output is simultaneously carrying 20% of the total output power.
- 4. Load and line transition time > 10 μ s
- 5. Assumes balanced loads on the outputs.


- Effect on the negative output from 50%/50% loads to 70%/30% or 30%/70% loads.
- 7. Unit will shut down above approximately 425V but will be undamaged and will restart when voltage drops into normal range.
- 8. Second output at 50%
- 9. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.

270 VOLT INPUT - 65 WATT

TOP VIEW CASE U*

Flanged case, short-leaded

*Does not require designator in Case Option position of model number.

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header Cold Rolled Steel/Nickel/Gold

Cover Kovar/Nickel

Pins #52 alloy/Gold, compression glass seal Seal Hole: 0.100 ±0.002 (2.54 ±0.05)

Case U, Rev F, 20100503

FIGURE 4: CASE U

270 VOLT INPUT - 65 WATT

STANDARD AND /ES (NON-QML) ENVIRONMENTAL SCREENING ^{1, 2}

	NON-QML					
TEST PERFORMED	STANDARD	/ES				
Pre-cap Inspection Method 2017, 2032	•	•				
Temperature Cycle (10 times) Method 1010, Cond. B, -55°C to +125°C, ambient		•				
Constant Acceleration Method 2001, 500 g		•				
Burn-in Method 1015 ³ 96 hours		•				
Final Electrical Test MIL-PRF-38534, Group A Subgroups 1 and 4: +25°C case	•	•				
Hermeticity Test Fine Leak, Method 1014, Cond. A Gross Leak, Method 1014, Cond. C Gross Leak, Dip (1 x 10 ⁻³)	•	:				
Final visual inspection Method 2009	•					

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

- 1. "Non-QML" Refers to products that do not offer QML screening.
- 2. Standard and /ES, non-QML products, may not meet all of the requirements of MIL-PRF-38534.
- 3. Burn-in designed to bring the case temperature to the maximum case temperature of the product. Refer to the specific product information for the maximum case temperature.

SCREENING TABLE 1: ENVIRONMENTAL SCREENING

