16 TO 50 VOLTS INPUT - 50 WATT

FEATURES

- 90% typical efficiency
- Wide input range, 16 to 50 volts
- Transient protection up to 80 volts per MIL-STD-704A
- Fully isolated, magnetic feedback
- -55°C to +125°C operation
- Undervoltage lockout
- Inhibit function

MODELS
OUTPUT VOLTAGE (V)
SINGLE
3.3
5

DESCRIPTION

The Interpoint® MFX Series[™] of high efficiency dc-dc converters offers a wide input voltage range of 16 to 50 volts and up to 50 watts of output power. The units are capable of withstanding short term transients up to 80 volts per MIL-STD-704A. The package is a hermetically sealed, welded metal case. Flanged and non-flanged models are available.

CONVERTER DESIGN

The MFX converters are switching regulators that use an active-clamp, single-ended forward converter and synchronous rectification design with a constant switching frequency of 500 kHz, typical. Isolation between input and output circuits is provided with transformers in the forward path and in the feedback control loop.

HIGHER POWER DENSITY

The MFX Series offers a new standard of performance for small size and high power density. At just 0.426 inches high and a total footprint of 2.34 in², this low profile package offers a total power density of approximately 50 watts per cubic inch.

LOW NOISE

The MFX converters current mode control system provides excellent dynamic response and noise rejection. Output voltage response for a 50% to 100% step load transient is as low as 5% with a 350 μ s, or less, recovery time.

INHIBIT FUNCTION

MFX converters provide an inhibit terminal that can be used to disable internal switching, resulting in no output and very low quiescent input current. The converter is inhibited when an active low (≤ 0.8 V – output disabled) is applied to the inhibit pin. The unit is enabled when the pin, which is internally connected to a pull-up current source, is left unconnected or is connected to an open-collector. The open circuit voltage associated with the inhibit pin is 14 to 18 volts. The inhibit pin may sink up to 4 mA maximum when driven to an active low condition. See Table 6 on page 6 for more information.

SHORT CIRCUIT PROTECTION

MFX Series converters provide short circuit protection by restricting the output current to approximately 125% of the full load output current.

UNDERVOLTAGE LOCKOUT

Undervoltage lockout with hysteresis prevents the units from operating below approximately 15 volts input voltage to keep system current levels smooth, especially during initialization or re-start operations.

16 TO 50 VOLTS INPUT - 50 WATT

FIGURE 1: MFX SINGLE BLOCK DIAGRAM

16 TO 50 VOLTS INPUT - 50 WATT

REMOTE SENSE

CAUTION: The converter will be permanently damaged if the positive sense (pin 7) is shorted to ground. Damage may also result if the output common or positive output is disconnected from the load when the remote sense leads are connected to the load.

FIGURE 3: TRIM CONNECTION

TABLE 1: TRIM FORMULAS						
25° C, V _O = desired output voltage ¹ , R_T = trim resistor (k Ω)						
Function	Function Nominal V _{OUT} Trim Range Formula ²					
Trim Down ³	3.3	3.3 to 3.0	$R_{\rm T} = 31.1 \ \frac{2.982 - V_{\rm O}}{V_{\rm O} - 3.311}$			
Trim Up ⁴		3.3 to 3.9	$R_{\rm T} = 23.2 \frac{3.996 - V_{\rm O}}{V_{\rm O} - 3.311}$			
Trim Down ³	5	5.0 to 4.5	$R_{\rm T} = 90.2 \frac{4.409 - V_{\rm O}}{V_{\rm O} - 5.015}$			
Trim Up ⁴		5.0 to 5.5	$R_{\rm T} = 72 \frac{5.522 - V_{\rm O}}{V_{\rm O} - 5.015}$			

1. The output voltage may vary by ±5% of the calculated value.

2. If the calculated value is negative, the desired output voltage is outside the allowed trim range.

3. When trimming down do not exceed the maximum current.

4. When trimming up do not exceed the maximum power.

FIGURE 2: REMOTE SENSE CONNECTION ¹

16 TO 50 VOLTS INPUT - 50 WATT

PIN OUT				
Pin	Single Output			
1	No connection			
2	Case Ground			
3	Output Common			
4	Output Common			
5	Positive Output			
6	Positive Output			
7	Positive Sense			
8	Trim			
9	Sense Return			
10	Positive Input			
11	Input Common			
12	Inhibit			

Inhibit	Leave unconnected
Positive Sense	Connect to Positive Output
Trim	Leave unconnected
Sense Return	Connect to Output Common

TABLE 3: PINS NOT IN USE

TABLE 2: PIN OUT

Dotted line outlines flanged package option.

See Figure 6 on page 8 and Figure 7 on page 9 for dimensions.

FIGURE 4: MFX SINGLE PIN OUT

16 TO 50 VOLTS INPUT - 50 WATT

SMD NUMBERS					
STANDARD MICROCIRCUIT DRAWING (SMD)	MFX SIMILAR PART				
5962-1520401HXC IN PROCESS	MFX283R3S/883				
5962-1520402HXC IN PROCESS	MFX2805S/883				
To indicate the flanged case option change the "X" to "Z" In the SMD number. The SMD number shown is for Class H screening, non-flanged. For exact specifications for an SMD product, refer to the SMD drawing. SMDs can be downloaded from: http://www.landandmaritime.dla.mil/programs/smcr					

TABLE 4: SMD NUMBER CROSS REFERENCE

MODEL NUMBER OPTIONS TO DETERMINE THE MODEL NUMBER ENTER ONE OPTION FROM EACH CATEGORY IN THE FORM BELOW.								
CATEGORY	CATEGORY Base Model and Input Voltage Output Voltage ¹ Number of Outputs ² Case Options ³ Screening ⁴							
OPTIONS	MFX28	3R3, 05	S	(non-flanged, leave blank) F (flanged)	(standard, leave blank) ES 883			
FILL IN FOR MODEL #	MFX28				/			

Notes

1. Output Voltage: An R indicates a decimal point. 3R3 is 3.3 volts out.

2. Number of Outputs: S is a single output.

3. Case Options: For the standard case, Figure 6 on page 8, leave the case option blank. For the flanged case option, Figure 7 on page 9, insert the letter F in the Case Option position

4. Screening: For standard screening leave the screening option blank. For other screening options, insert the desired screening level. For more information see Table 8 on page 10 and Table 9 on page 11.

TABLE 5: MODEL NUMBER OPTIONS

16 TO 50 VOLTS INPUT - 50 WATT

TABLE 6: OPERATING CONDITIONS, ALL MODELS, 25°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

MFX SERIES		AL	L MODE	LS	
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LEAD SOLDERING TEMPERATURE ¹	10 SECONDS MAX.	_	-	300	°C
STORAGE TEMPERATURE ¹		-65	_	+150	°C
CASE OPERATING	FULL POWER	-55	-	+125	ംറ
TEMPERATURE	ABSOLUTE ¹	-55	—	+135	Ű
DERATING OUTPUT POWER/CURRENT ¹	LINEARLY	From 1	00% at 1	25°C to (0% at 135°C
ESD RATING ¹	MIL-STD-883 METHOD 3015		250 - 499)	v
MIL-PRF-38534, 3.9.5.8.2	CLASS 1A		200 100	, 	
ISOLATION: INPUT TO OUTPUT OR ANY	500 VDC AT 25°C	100	_	_	Megohms
PIN TO CASE EXCEPT CASE PIN					mogonino
UNDERVOLTAGE LOCKOUT	RISING V _{IN} (TURN ON)	13.3	15.3	15.9	
-55°C TO +125°C	FALLING V _{IN} (TURN OFF)	13.3	14.3	15.6	V
CURRENT LIMIT	% OF FULL LOAD	_	125	_	%
CONVERSION FREQUENCY	FREE RUN -55° TO +125°C	455	500	545	kHz
INHIBIT ACTIVE LOW (OUTPUT DISABLED)	INHIBIT PIN PULLED LOW ²	_	-	0.8	V
Do not apply a voltage to the inhibit pin ³	INHIBIT PIN SOURCE CURRENT ¹	_	_	4	mA
	REFERENCED TO	INPUT COMMON			DN
INHIBIT ACTIVE HIGH (OUTPUT ENABLED)	INHIBIT PIN CONDITION	EXTERNAL OPEN COLLECTOR OR			ECTOR OR
Do not apply a voltage to the inhibit pin ³		LEAVE UNCONNECTED			CTED
	OPEN CIRCUIT PIN VOLTAGE ¹	14	16	18	V

For mean time between failures (MTBF) contact Applications Engineering powerapps@crane-eg.com +1 425-882-3100 option 7

Notes:

2. Tested with inhibit pin pulled to ground through a diode.

^{1.} Guaranteed by characterization test and/or analysis. Not a production test.

^{3.} An external inhibit interface should be used to pull the inhibit low or

leave it floating. The inhibit pin can be left unconnected if not used.

16 TO 50 VOLTS INPUT - 50 WATT

TABLE 7: ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 28 VIN, 100% LOAD, FREE RUN, UNLESS OTHERWISE SPECIFIED.

SINGLE OUTPUT MODELS		MFX283R3S		MFX2805S				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	T _C = 25°C	3.26	3.30	3.34	4.95	5.00	5.05	
	T _C = -55°C TO +125°C	3.20	3.30	3.40	4.85	5.00	5.15	V
OUTPUT CURRENT	V _{IN} = 16 to 50 V	_	_	15.15	—	_	10	А
OUTPUT POWER	V _{IN} = 16 to 50 V	_	—	50	_	—	50	W
OUTPUT RIPPLE	$T_{\rm C} = 25^{\circ}{\rm C}$	—	50	100	—	50	100	mV n-n
20 Hz - 10 MHz	T _C = -55°C TO +125°C	_	50	100	—	50	100	
LINE REGULATION	V _{IN} = 16 to 50	_	1	15	_	1	15	mV
LOAD REGULATION	NO LOAD TO FULL	—	2	30	_	2	30	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	V
NO LOAD TO FULL	TRANSIENT ^{1, 2}	—	_	80	_	—	80	V
INPUT CURRENT	NO LOAD	—	60	140	_	75	140	mA
	INHIBITED	_	3	6	—	3	6	
INPUT RIPPLE CURRENT	20 Hz - 10 MHz	—	50	150	—	50	150	mA p-p
EFFICIENCY	$T_{\rm C} = 25^{\circ}{\rm C}$	85	89	_	87	91	—	%
	TC = -55°C TO +125°C	84	88	-	85	89	_	,0
LOAD FAULT ³	POWER DISSIPATION	—	9	16	—	6	16	W
SHORT CIRCUIT	RECOVERY ¹	—	13	20	—	13	20	ms
STEP LOAD RESPONSE ³	TRANSIENT	_	120	300	—	70	250	mV pk
50% - 100% - 50%	RECOVERY	—	150	300	—	190	350	us
STEP LINE RESPONSE 1, 3	TRANSIENT	—	50	265	—	80	300	mV pk
16 - 50 -16 V	RECOVERY	_	130	350	—	180	350	μs
START-UP ^{3, 4}	DELAY	—	17	25	—	17	25	ms
FULL LOAD	OVERSHOOT ¹	—	0	30	_	0	50	mV pk
CAPACITIVE LOAD	NO EFFECT ON DC	_	_	3000	_	_	3000	υF
T _C = 25°C	PERFORMANCE							<u>.</u>

Notes

1. Guaranteedbycharacterizationtest and/or analysis. Notaproductiontest. 2. Up to 80 volt transient per MIL-STD-704 A. Recovery and startup times are measured from application of the transient or change in condition to the point at which V_{OUT} is within 1% of final value.

4. Tested on release from inhibit.

16 TO 50 VOLTS INPUT - 50 WATT

Seam Seal Dot on top of case indicates pin one. 1.115 max. (28.32) _0.955 (24.26) \odot \odot \oplus \oplus \odot Œ 0.040 dia ±0.002 (1.02 ±0.05) 12 11 10 9 8 0.155 (3.94) \oplus \odot \odot \odot \odot \odot 0.000 0.426 max. (10.82) 0.000 0.000 0.195 (4.95) 0.595 (15.11) 0.795 (20.19) 0.995 (25.27) 1.095 (27.81) 1.295 (32.89) 1.495 (37.97) 1.695 (43.05) 1.895 (48.13) (6.1) 2.095 max. (53.21) 0.24

BOTTOM VIEW MFX

Weight: 52 grams maximum

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

 Header
 Cold Rolled Steel/Nickel

 Cover
 Kovar/Nickel

 Pins
 #52 alloy/Gold glass compression seal

 Gold plating of 50 - 150 microinches included in pin diameter

 Seal hole 0.092 ±0.002 (3.05 ± 0.05)

Case H7 MFX S, Rev A 2015.04.21 Please refer to the numerical dimensions for accuracy.

FIGURE 6: MFX

16 TO 50 VOLTS INPUT - 50 WATT

BOTTOM VIEW MFX FLANGED

Flanged cases: Designator "F" required in Case Option position of model number

Weight: 52 grams maximum

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

 Header
 Cold Rolled Steel/Nickel

 Cover
 Kovar/Nickel

 Pins
 #52 alloy/Gold glass compression seal

 Gold plating of 50 - 150 microinches included in pin diameter

 Seal hole 0.092 ±0.002 (3.05 ± 0.05)

Case J7 MFX S, Rev A 2015.04.21 Please refer to the numerical dimensions for accuracy.

FIGURE 7: MFX FLANGED

16 TO 50 VOLTS INPUT - 50 WATT

ELEMENT EVALUATION ¹ HIGH RELIABILITY /883 (CLASS H)

	QML		
	CLASS H /883		
COMPONENT-LEVEL TEST PERFORMED	M/S ²	P ³	
Element Electrical			
Visual			
Internal Visual			
Final Electrical			
Wire Bond Evaluation			

Notes

1. Element evaluation does not apply to standard and /ES product.

2. M/S = Active components (microcircuit and semiconductor die).

3. P = Passive components, Class H element evaluation. Not applicable to standard and /ES element evaluation.

TABLE 8: ELEMENT EVALUATION

16 TO 50 VOLTS INPUT - 50 WATT

ENVIRONMENTAL SCREENING HIGH RELIABILITY STANDARD, /ES AND /883 (CLASS H)

	NON-QML ¹		QML ²
TEST PERFORMED	STANDARD	/ES	CLASS H /883
Pre-cap Inspection, Method 2017, 2032			
Temperature Cycle (10 times)			
Method 1010, Cond. C, -65°C to +150°C, ambient			
Method 1010, Cond. B, -55°C to +125°C, ambient			
Constant Acceleration			
Method 2001, 3000 g			•
Method 2001, 500 g			
PIND, Test Method 2020, Cond. A			∎ 3
Burn-in Method 1015, +125°C case, typical ⁴			
96 hours			
160 hours			
Final Electrical Test, MIL-PRF-38534, Group A,			
Subgroups 1 through 6, -55°C, +25°C, +125°C case			
Subgroups 1 and 4, +25°C case			
Hermeticity Test			
Gross Leak, Cond. C ₁ , fluorocarbon		•	•
Fine Leak, Cond. A ₂ , helium			
Gross Leak, Dip			
Final visual inspection, Method 2009			

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

1. Standard and ES are non-QML products and may not meet all of the requirements of MIL-PRF-38534.

2. All processes are QML qualified and performed by certified operators.

3. Not required by DLA but performed to assure product quality.

4. Burn-in temperature designed to bring the case temperature to +125°C minimum. Burn-in is a powered test.

TABLE 9: ENVIRONMENTAL SCREENING

